
Divide and Conquer Strategies for Effective Information Retrieval∗

Jie Chen† Yousef Saad†

Abstract

The standard application of Latent Semantic Indexing (LSI),

a well-known technique for information retrieval, requires

the computation of a partial Singular Value Decomposition

(SVD) of the term-document matrix. This computation

becomes infeasible for large document collections, since it is

very demanding both in terms of arithmetic operations and

in memory requirements. This paper discusses two divide

and conquer strategies, with the goal of alleviating these

difficulties. Both strategies divide the document collection

in subsets, perform relevance analysis on each subset, and

conquer the analysis results to form the query response.

Since each sub-problem resulting from the recursive division

process has a smaller size, the processing of large scale

document collections requires much fewer resources. In

addition, the computation is highly parallel and can be easily

adapted to a parallel computing environment. To reduce the

computational cost, we perform the analysis on the subsets

by using the Lanczos vectors instead of singular vectors as

in the standard LSI method. This technique is far more

efficient than the computation of the truncated SVD, while

its accuracy is comparable. Experimental results confirm

that the proposed divide and conquer strategies are effective

for information retrieval problems.

1 Introduction

Techniques of information retrieval extract relevant doc-
uments in a collection, in response to a user query. As
is well-known [2] information retrieval techniques based
on exact literal matching, i.e., on direct comparisons
between the columns of the term-document matrix and
the query, may be inaccurate due to common problems
of word usage such as synonymy and polysemy. Latent
Semantic Indexing (LSI) [12] is a well-known method
which was developed to deal with these difficulties. LSI
projects the original term-document matrix into a re-
duced rank subspace by resorting to the Singular Value
Decomposition (SVD). The comparison of the query
with the documents is then performed in this subspace

∗This work was supported by NSF grants DMS 0510131 and-
DMS 0528492 and by the Minnesota Supercomputing Institute.

†Department of Computer Science and Engineering, Uni-
versity of Minnesota at Twin Cities, MN 55455. {jchen,
saad}@cs.umn.edu.

and produces in this way a more meaningful result.
To be specific, let a collection of m terms and n

documents be represented in an m × n term-document
matrix

X = [xij]

where xij is the weight of term i in document j. The
weights xij depend on how often the term i appears
in document j but also on other scalings used, see,
e.g., [2, 11] for details. A term-document matrix is
generally very sparse because a given term typically
occurs only in a small subset of documents. A query
is represented as a pseudo-document in a similar form,
q = [qi], where qi represents the weight of term i in the
query.

The Vector Space Model (VSM) computes the sim-
ilarity between the query q and a document vector xj ,
which is the j-th column of X, simply as the cosine of
the angle between the two vectors:

cos(q, xj) =
qT xj

‖q‖2 ‖xj‖2
.

With this approach, we can rank all documents in the
collection with respect to their relevance to q by simply
computing the n-dimensional vector

(1.1) s = qT X

and scaling the results with the norms of the correspond-
ing columns of X.

The model just described is too simple and it
is ineffective in practice as it relies on exact litteral
matches between entries in q and those in X. LSI
addresses this problem by projecting the data matrix X
into a small dimensional subspace with the help of the
SVD. To be specific, let X have the SVD X = UΣV T ,
with its truncated rank-k version:

(1.2) Yk = UkΣkV T
k ,

where Uk (resp. Vk) consists of the first k columns of U
(resp. V), and Σk is the k-th principal submatrix of Σ.
The matrix Yk is the best rank-k approximation of X
in the 2-norm or Frobenius norm sense [13, 17]. Up to
scalings, the relevance vector produced by LSI is then
given by

(1.3) sk = qT Yk,

which replaces the expression (1.1) of the VSM.
Current implementations of LSI mainly rely on

matrix decompositions (see e.g., [4, 23]), predominantly
the truncated SVD [2, 3]. A notorious difficulty with
this approach is that it is computationally expensive
for large X. In addition, frequent changes in the
data require updates to the SVD, and this is not an
easy task. Much research has been devoted to the
problem of updating the (truncated) SVD [29, 31, 7, 27].
A drawback of these approaches is that the resulting
(truncated) SVD loses accuracy after frequent updates.

To bypass the truncated SVD computation,
Kokiopoulou and Saad [22] introduced polynomial fil-
tering techniques, and Erhel et al. [14] and Saad [26]
proposed algorithms for building good polynomials to
use in such techniques. These methods all efficiently
compute a sequence of vectors that progressively ap-
proximate the vector sk defined in (1.3), without re-
sorting to the expensive SVD.

In this paper we propose two divide and conquer
techniques with a primary goal of reducing the cost of
LSI. The divide and conquer strategy is particularly at-
tractive for very large problems when performing the
SVD is difficult. The proposed methods recursively di-
vide the data set using spectral bisection techniques,
and separately perform relevance analysis on each sub-
set. Then, partial analysis results are conquered to form
the final answer. The two proposed strategies differ in
how the data set is partitioned, as well as in the subse-
quent conquering process.

One advantage of dividing the term-document ma-
trix X into smaller subsets is that the analysis of each
subset becomes feasible, say on a single machine, even
when X is large. In a parallel environment, all the sub-
sets can be analyzed in parallel and the partial results
can be combined. Furthermore, the computation and
analysis on smaller subsets will be much cheaper than
that on X itself.

Though the primary motivation for the proposed
strategies lies in their computational efficiency, they are
nevertheless designed by exploiting the underlying se-
mantics of the texts. Our divide steps are based on a
spectral bisection method [6], which has been proven
to be effective for clustering tasks in text mining appli-
cations. Since each resulting subset has more homoge-
neous contents than the original data set, analysis on
these subsets tends to extract more semantic related in-
formation and structures than the LSI method on the
whole set. This idea of breaking an inhomogeneous
data set into homogeneous subsets was also investigated
in [16], where the authors performed a k-means cluster-
ing on the documents before running LSI on each clus-
ter. This paper uses a much more efficient partitioning

technique, and shows that the idea applies to not only
documents, but also terms.

Another feature included in the proposed strategies
is that we use Lanczos vectors to perform relevance anal-
ysis on the subsets resulting from the divide processes.
This is an important step to significantly reduce the
computational cost. As is well known in numerical lin-
ear algebra, the Lanczos procedure [24] is often preferred
for computing the largest k singular vectors of a large
sparse matrix [5]. Nevertheless, it takes a large number
of iterations to obtain accurate singular vectors when k
is large (as in the case for LSI in practice). Instead, we
run only k Lanczos iterations and do not compute any
singular vectors. We use the k Lanczos vectors to per-
form the relevance analysis on each subset. It is shown
in [10] that using these k Lanczos vectors is an effective
replacement of the k singular vectors for dimensionality
reduction.

The rest of the paper is organized as follows.
Section 2 presents the two divide and conquer strategies,
and Section 3 discusses the efficient analysis on the
subsets. These two sections combined constitute the
main algorithmic contributions of the paper. Then in
Section 4 a few experiments are shown, and concluding
remarks are given in Section 5.

2 Divide and conquer strategies

A paradigm known for its effectiveness when solving
very large scale scientific problems is that of multi-
level approaches. The term “multilevel” can have dif-
ferent meanings depending on the application and gen-
eral methodology being used. In the context of linear
systems of equations, powerful strategies, specifically
multigrid or algebraic multigrid methods [9, 8, 18] have
been devised to solve linear systems by essentially re-
sorting to divide and conquer strategies that exploit the
relationship between the mesh and the eigenfunctions of
the operator.

In the context of information retrieval, divide and
conquer strategies will consist of splitting the original
data into smaller subsets on which the analysis of
similarities between the query and the documents is
performed. We consider two ways to perform divide
and conquer in this section. The first one, column
partitioning, is generally useful for data matrices X
with many more rows than columns, while the second
one, row partitioning, is for matrices that have many
more columns than rows. Note that this is somewhat
counter-intuitive. Indeed, one is inclined to partitioning
the column set if the matrix is wide and short, and
the row set in the opposite situation. However, a little
cost analysis along with experimentation shows that the
opposite is computationally more appealing.

In a nutshell, we recursively bisect (either vertically
or horizontally) the data matrix using an efficient spec-
tral bisection technique, and accordingly design meth-
ods to compute the query relevance. From the point of
view of data clustering, the partitioning exposes more
latent semantic structures than the original data matrix,
since the data (documents or terms) are clustered ac-
cording to the common concepts they represent. On the
other hand, the low-rank-plus-shift theorem (see Sec-
tion 2.2.2) indicates that performing analysis on individ-
ual subsets has a similar effect to that on the whole set,
since latent structures are preserved. With these guar-
antees, we focus on how to effectively perform the anal-
ysis on subsets and produce accurate relevance scores.

2.1 Divide and conquer on the document set
(column partitioning). It may be most natural to
think of grouping documents in subsets by invoking
similarities between the documents. Given a set of
n documents represented in matrix form as X =
[x1, x2, . . . , xn] ∈ Rm×n, the top-down approach to
clustering the document set is to partition the set (of
columns) recursively in two subsets until a desirable
number of clusters is reached. This partitioning can be
done in a number of ways. We select spectral bisection,
a simple-to-implement technique whose effectiveness
has been well documented in the literature, see, e.g.,
[6, 28, 21, 15].

The main ingredient used by spectral techniques in
order to divide a set in two is the property that the
largest left singular vector1 u of X̄ = X − ceT yields
a hyperplane which separates the set X in two good
clusters, namely

(2.4a)

{
X+ = {xi | uT (xi − c) ≥ 0},
X− = {xi | uT (xi − c) < 0}.

Here c is the centroid of the data set and e is the column
vector of all ones. Equivalently, this is to split the set
into subsets

(2.4b)

{
X+ = {xi | vi ≥ 0},
X− = {xi | vi < 0},

where v is the largest right singular vector of X̄. If it is
preferred that the sizes of the clusters are balanced, an
alternative is to replace the above criterion by

(2.5)

{
X+ = {xi | vi ≥ m(v)},
X− = {xi | vi < m(v)},

1By abuse of language we will use the term largest singular
vector to mean the singular vector associated with the largest
singular value.

where m(v) represents the median of the entries of
vector v.

Computationally, the largest left/right singular vec-
tors can be inexpensively computed via the Lanczos al-
gorithm by exploiting the sparsity of X [6]. Note that
from the point of view of graph partitioning, the tech-
nique just described partitions the set of columns with-
out resorting to the graph Laplacian. Therefore, we are
implicitly partitioning the hypergraph which is canoni-
cally associated with the matrix X when the hyperedges
are defined from the columns of X.

X
(2)
1 X

(2)
2 X

(2)
3 X

(2)
4

X
(1)
1

u
(1,1)

X
(1)
2

u
(1,2)

X
(0)
1

u
(0,1)

Figure 1: A 2-level subdivision of a term-document
matrix X. The vectors u(i,j) shown for levels 0 and 1 are
perpendicular to the separating hyperplanes associated
with the nodes. Note that this figure is not drawn to
scale—column partitioning is better applied to matrices
that are tall and thin.

The bisection tool just described can be employed
to recursively divide the data set; see Figure 1 for an
illustration. At level zero (initial level) we have only
one set X

(0)
1 ≡ X. This set is partitioned into two

subsets X
(1)
1 and X

(1)
2 , which are further partitioned

into X
(2)
1 , X

(2)
2 , X

(2)
3 and X

(2)
4 . A binary tree structure

results from this recursive partitioning procedure, which
selects the largest leaf node to partition each time until
a desired number of leaf nodes are created. Note that
this tree need not be a complete tree, i.e., all the leaves
might not be at the same level.

At each node in the tree, a vector of length m
(denoted by u(i,j) in the figure) is needed when a
further subdivision of the set X

(i)
j is required. Indeed,

this node can only be a non-leaf node in the final

tree. The vector u(i,j) is the largest left singular vector
of X

(i)
j after centering. The separating hyperplane

associated with this node has a normal in direction
u(i,j) and passes through the centroid c(i,j) of X

(i)
j . The

vector u(i,j) always points towards the left child of X
(i)
j .

For consistency, we label the two children X
(i+1)
2j−1 and

X
(i+1)
2j . See Figure 2 for an illustration.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

b
b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b b

c
(i,j)

b

u
(i,j)

X
(i+1)
2j−1

left child

X
(i+1)
2j

right child

d

Figure 2: Illustration of partitioning a node X
(i)
j into

two children X
(i+1)
2j−1 and X

(i+1)
2j . The vector u(i,j) always

points towards the left child. The two dashed frames
indicate the actual configuration of the two subsets,
which share a margin of width d around the hyperplane.

In practice we create a margin around the separat-
ing hyperplane, and both children share this margin.
This small overlapping of the subsets helps improve ac-
curacy. The analysis on both sides of the hyperplane
may result in discrepancies for the similarity between a
document inside the margin and a specific query. Over-
lapping the two children allows flexibility when deciding
the relevance scores of the documents inside the margin.

2.1.1 Query response. Given a query q, the stan-
dard LSI works by performing analysis on the whole
data set X. Specifically, the k largest singular vectors
of X are extracted and they form a subspace with re-
gard to which the similarities between q and columns of
X are computed. In our divide and conquer strategy,
X is partitioned into several subsets (leaf nodes), hence
analysis can be performed on each leaf node and rele-
vance scores are produced. In Section 3 we will see an
efficient way to perform this analysis. In this section, let
us temporally disregard the analysis and simply assume
that relevance scores are available.

If a document appears in only one leaf node, the rel-
evance score for this document is just the one resulting

from the analysis on this node. If it appears in multiple
leaf nodes, we select the maximum of all scores from
these nodes to be the relevance score for this document.
A document appears in multiple leaf nodes because it
is residing within the margin of some dividing hyper-
plane. The recursive partitioning procedure essentially
performs clustering on the whole document collection,
hence the document being considered is on the border of
several clusters. The question “how relevant this doc-
ument is to the query” may yield different answers if
the analysis is separately performed on each clusters.
The maximum score from the analysis captures the most
probable relevance of the document to the given query.

This divide and conquer strategy based on column
partitioning is summarized in Algorithm 1.

Algorithm 1 D&C-LSI: Column Partitioning
1: Recursively bisect the columns of X. A binary tree

structure is formed as in Figure 1.
2: For a given query q, compute relevance scores

between q and those in the leaf nodes.
3: The relevance score of a document is the maximum

of all the scores computed in the previous step for
this document.

2.2 Divide and conquer on the term set (row
partitioning). It is also possible to partition terms
instead of documents and this can be a better approach
than that of the preceding subsection when m ≤ n. The
partitioning approach is identical to that of the previous
subsection with the simple exception that it is applied
to the transpose of X.

The matrix X is now partitioned row-wise into p
subsets and the query q is split accordingly, i.e.,

(2.6) X =

X1

...
Xp

 and q =

q1

...
qp

 .

See Figure 3 for an illustration. Here each Xi represents
a matrix of size mi × n containing mi rows of X,
obtained by a recursive spectral bisection technique
on the rows rather than the columns. For example,
X1, . . . , X4 in Figure 3 can be obtained the same way
as shown in Figure 1, with the illustration rotated 90◦

counter clockwise. For simplicity, here we use 1, 2, . . . ,
p to index all the leaf nodes instead of using the (i, j)
tuple to index the subsets in the hierarchy as in the
previous subsection.

2.2.1 Query response. The question now is how
to compute the similarities between a query and the

X4

X3

X2

X1

q4

q3

q2

q1

m4

m3

m2

m1

n

Figure 3: A term-wise subdivision of a term-document
matrix X into 4 subsets. The query q is subdivided
accordingly. Note that this figure is not drawn to scale—
row partitioning is better applied to matrices that are
wide and short.

columns of the original matrix X. If we had just
computed the inner products of the partial columns of
X with the corresponding parts of q and then added the
results, the result would be no different from that of the
standard VSM. We need instead to perform an analysis
similar to LSI on each subdivision of X and combine the
partial results. In this section we illustrate how this is
done using the truncated SVD approach. This approach
can be easily modified into a more efficient one based
on the Lanczos algorithm as described in Section 3.

Let the local SVD of each Xi be Xi = UiΣiV
T
i with

its truncated rank-k version

(2.7) Yi,k = Ui,kΣi,kV T
i,k.

Then, the similarity scores for all the documents are

(2.8) s′k =
p∑

i=1

qT
i Yi,k

followed by a scaling with the norms of the correspond-
ing columns of

X̂ =

Y1,k

...
Yp,k

 .

Note that formula (2.8) is very similar to (1.3), except
that both q and X are partitioned.

The sparsity of the query vector can be exploited
to reduce the computational cost. It is likely that some
parts of q are completely zero, hence it is not necessary
to compute qT

i Yi,k for some i’s. The cost will be greatly
reduced if only one or two subdivisions of q have non-
zero elements, which is common in practice.

This divide and conquer strategy based on row
partitioning is summarized in Algorithm 2. Note that
the analysis in lines 3 and 4 will be replaced later by an
efficient alternative described in Section 3.

Algorithm 2 D&C-LSI: Row Partitioning
1: Recursively bisect the rows of X, resulting in sub-

matrices X1, X2, . . . , Xp.
2: For a given query q, subdivide the rows of q accord-

ingly.
3: Perform analysis on each subdivision and sum up

the results as in (2.8).
4: Scale each entry of s′k by the norm of the corre-

sponding column of X̂.

2.2.2 Rationale of the use of X̂. Comparing Equa-
tion (2.8) with (1.3), this divide and conquer strategy
essentially performs an analysis with the matrix X̂ re-
placing X in the standard LSI. The validity of this ap-
proach comes from the fact that the best rank-k approx-
imation of X and that of X̂ are the same under certain
conditions. All this means is that we do not lose latent
information by performing analysis on each individual
subdivision of X instead of on X itself.

The proof that the two approximations just men-
tioned are equal is based on the following theorem:

Theorem 2.1. Let bestk(·) denote the best rank-k ap-
proximation of a matrix. Consider

X =
[
X1

X2

]
and X̂ =

[
bestk(X1)
bestk(X2)

]
,

where X1 ∈ Rm1×n and X2 ∈ Rm2×n with m1+m2 ≤ n.
Assume that there exists a symmetric positive semi-
definite matrix Y of rank k and a positive number σ
such that XXT = Y + σI, then

bestk(X) = bestk(X̂).

This theorem is essentially the row-wise version of
Theorem 4.2 in [32]. (See also the remark thereafter.)
Hence the proof is omitted here. Note that the theorem
is restricted to situations when m ≤ n, since otherwise
XXT is singular.

Theorem 2.1 indicates that if XXT has a low-rank-
plus-shift structure, then the best rank-k approximation

of X is the same as that of X̂. Hence by induction,
when X is subdivided in p partitions as in (2.6),
then bestk(X) = bestk(X̂) still holds, assuming that
X, as well as all the submatrices to be partitioned
in the subdivision process, has the low-rank-plus-shift
structure when being multiplied by its transpose.

As pointed out in [32] after a perturbation analysis,
it is not unrealistic to assume the low-rank-plus-shift
structure for real-life data. Hence it is reasonable to use
X̂ in place of X in a divide and conquer analysis. As was
mentioned above, the theorem implicitly assumes that
m ≤ n, that is, the term-document matrix X is wide
and short. Though this is not true for many small-scale
existing experimental data sets, one should expect that
in practice it is the dominant situation, since vocabulary
is limited while text corpora are growing in size. We use
two such data sets in Section 4 for experiments.

2.3 More divide and conquer strategies. The
two partitioning strategies previously described can be
combined to devise other divide and conquer strategies.
When X itself is considered a hypergraph, the subdivi-
sion of X amounts to partitioning the edges or vertices
of the graph. A number of articles applying hypergraph
partitioning techniques, e.g., [19, 1], have exploited the
sparsity of X and considered reordering the rows and
columns of X into block form or near block form. Then
the data matrix X is naturally partitioned into blocks
according to the sparsity patterns, and analysis can be
performed on the diagonal blocks. An illustration is
given in Figure 4. In this paper we will not consider
this reordering approach further and leave it for future
investigations.

3 Relevance analysis using Lanczos vectors

As mentioned earlier, the LSI method, which uses sin-
gular vectors of the term-document matrix for rele-
vance analysis, is expensive due to the computation of
the truncated SVD. Instead, we propose using a tech-
nique, called Lanczos approximation, to perform rel-
evance analysis in our divide and conquer strategies.
This technique essentially computes the query relevance
in the subspace spanned by the Lanczos vectors instead
of that spanned by the singular vectors. The effective-
ness of this technique when applied to the whole data
set X has been demonstrated in a report [10]. In this
paper we apply this technique to each subdivision of
X. We first briefly review the symmetric Lanczos al-
gorithm, which is later used to develop the relevance
analysis.

3.1 The symmetric Lanczos algorithm. Given a
symmetric matrix A ∈ Rn×n and an initial unit vector

0 50 100 150 200

0

50

100

150

200

250

300

350

400

nz = 4893
0 50 100 150 200

0

50

100

150

200

250

300

350

400

nz = 4893

Figure 4: A small rectangular sparse matrix before and
after reordering in block diagonal form.

q1, the Lanczos algorithm builds an orthonormal basis
of the Krylov subspace

Kk(A, q1) = span{q1, Aq1, A
2q1, . . . , A

k−1q1}.

The vectors qi, i = 1, . . . , k computed by the algorithm
satisfy the 3-term recurrence

βi+1qi+1 = Aqi − αiqi − βiqi−1

with β1q0 ≡ 0. The coefficients αi and βi+1 are
computed so as to ensure that 〈qi+1, qi〉 = 0 and
‖qi+1‖2 = 1. In exact arithmetic, it turns out that qi+1

is orthogonal to q1, . . . , qi so the vectors qi, i = 1, . . . , k
form an orthonormal basis of the Krylov subspace
Kk(A, q1). In practice some form of reorthogonalization
is needed, as orthogonality is lost fairly soon in the
process.

If Qk = [q1, . . . , qk] ∈ Rn×k then an important
equality resulting from the algorithm is

QT
k AQk = Tk =

α1 β2

β2 α2 β3

.
βk−1 αk−1 βk

βk αk

.

An eigenvalue θ of Tk is called a Ritz value, and if y is an
associated eigenvector, Qky is called the associated Ritz
vector. As k increases more and more Ritz values and
vectors will converge towards eigenvalues and vectors of
A [17, 25].

3.2 Lanczos approximation. A good alternative to
the vector sk defined in (1.3) can be efficiently obtained
by exploiting the Lanczos procedure. Let A = XT X be
applied to the Lanczos algorithm which yields equality

(3.9) QT
k XT XQk = Tk.

By defining

(3.10) wi := qT XQiQ
T
i , i = 1, 2, . . .

i.e., letting wi be the projection of s = qT X onto the
subspace range(Qi), it can be proved that the difference
between wi and s in the right singular direction vj of X
decays at least with the same order as T−1

i−j(γj), where
Ti−j(·) is the Chebyshev polynomial of the first kind
of degree i − j, and γj is a constant independent of i
and larger than 1. This means that as i increases, wi

is progressively closer to s in major singular directions
of X. Hence when i = k, wi is considered a good
approximation to sk.

The vector wk can be most efficiently computed
via matrix-vector multiplications ((qT X)Qk)QT

k . The
computation of wk in this way is much more inexpensive
than the computation of sk = qT Xk. In fact, computing
sk requires computing the truncated SVD of X. A
typical way of computing Xk is to go through the
Lanczos process as in (3.9) with k′ > k iterations, and
then compute the eigen-elements of Tk′ . We see that
the gain in efficiency of computing wk instead of sk

comes from running the Lanczos procedure using only
k iterations and not attempting to compute an eigen
decomposition.

Besides wk, there is another alternative to the
expensive calculation of sk. Let Ã = XXT be applied
to the Lanczos algorithm which yields the equality

(3.11) Q̃T
k XXT Q̃k = T̃k.

Define

(3.12) ti := qT Q̃iQ̃
T
i X, i = 1, 2, . . .

It can be similarly proved that the difference between
ti and s in the right singular direction vj of X decays
at least with the same order as T−1

i−j(γ̃j). This in turn
means that ti is progressively closer to s in major sin-
gular directions of X as i increases, and tk is considered
a good approximation to sk. The most economic way
of computing tk is ((qT Q̃k)Q̃T

k)X.
The choice of whether to use wk or tk in replace

of sk solely depends on the relative magnitude of m
and n, i.e., the shape of the matrix X. The time cost of
computing wk is O(k(nnz+n)), while that of computing
tk is O(k(nnz + m)), where nnz is the number of non-
zero elements in X. It is clear that wk is a better choice
when m ≥ n, while tk is more appropriate when m < n.

3.3 Relevance analysis on the subdivisions of
X. The relevance analysis on each subdivision Xi re-
sulting from either column partitioning or row partition-
ing follows that we compute the similarities between the
query vector q and the documents on a reduced rank
subspace of Xi. Recall that for LSI, this subspace is
spanned by the k largest singular vectors of Xi. In our
strategies, we use the subspace spanned by the Lanczos
vectors.

To be specific, for column partitioning (line 2 of
Algorithm 1), the relevance scores for the documents
in a subdivision Xi are first computed as the vector
wi,k = qT XiQi,kQT

i,k, which is then scaled by the norms
of the corresponding columns of XiQi,kQT

i,k. Similarly,
for row partitioning (lines 3 and 4 of Algorithm 2),
we first compute a vector ti,k = qT

i Q̃i,kQ̃T
i,kXi for

each Xi, sum these ti,k vectors for all i, and then
scale the resulting vector entries by the norms of the
corresponding columns of

Q̃1,kQ̃T
1,kX1

...
Q̃p,kQ̃T

p,kXp

 .

4 Experimental results

We present several experimental results that show that
the proposed divide and conquer strategies are effective,
at least comparable to LSI, and are far more efficient.
Most of the experiments were performed in Matlab
under a Linux workstation with a P4 3.20GHz CPU and
4GB memory. The only exception is that the truncated
SVD of the TREC data set was computed on a machine
with 16GB of memory, because Matlab was unable to
handle such large data using less machine memory. It
is worthwhile to note that the proposed strategies with
experimented data sets can be completely fit into 4GB
of memory.

4.1 Data sets. With limited data sets that have the
relevance judgements available, we used the following
four for experiments. Data statistics are summarized in
Table 1.

Table 1: Data sets.
MED CRAN NPL TREC

terms 7,014 3,763 7,491 138,232
docs 1,033 1,398 11,429 528,030
queries 30 225 93 50
ave terms/doc 52 53 20 129

MEDLINE and CRANFIELD2: These are the
two early benchmark data sets for information retrieval.
Their typical statistics is that the number of distinct
terms is more than the number of documents (m > n).

NPL1: This data set is larger than the previous
two, with a distinct property that the number of docu-
ments is more than the number of distinct terms (m <
n). Including the above two, these three data sets have
the term-document matrices readily available from the
provided links, so we did not perform additional pro-
cessing on the data.

TREC3: This large data set is popular when ex-
periments in extensive text mining applications are per-
formed. The whole data set consists of four document
collections (Financial Times, Federal Register, Foreign
Broadcast Information Service, and Los Angeles Times)
from the TREC CDs 4 & 5 (copyrighted). The queries
are from the TREC-8 ad hoc task45. Similar to NPL,
the extracted term-document matrix has more docu-
ments than distinct terms (m < n). The following
is the specific details of how we extracted the matrix.
We used the software TMG [30] to construct the term-
document matrix. The parsing process included stem-
ming, deleting common words according to the stop-list
provided by the software, and removing words with no
more than 5 occurrences or with appearance in more
than 100,000 documents. Also, 125 empty documents
were ignored. This resulted in a term-document matrix
of size 138232 × 528030. For the queries, only the title
and description parts were extracted to construct query
vectors.

4.2 Implementation specs. The weighting scheme
of all the term-document matrices was term frequency-
inverse document frequency (tf-idf). To include
marginal data points in subsets during bisection, we
used the following criterion:

(4.13)

{
X+ = {xi | vi ≥ vmin/10}
X− = {xi | vi < vmax/10}

instead of formula (2.4b). The only exception is that
for TREC we used criterion (2.5). The reason will be
explained later in Section 4.4.

4.3 Column partitioning. The divide and conquer
strategy with column partitioning was applied to MED-
LINE and CRANFIELD, since their term-document
matrices have more rows than columns. Figure 5 shows

2ftp://ftp.cs.cornell.edu/pub/smart/
3http://trec.nist.gov/data/docs eng.html
4Queries: http://trec.nist.gov/data/topics eng/
5Relevance: http://trec.nist.gov/data/qrels eng/

the performance of this strategy (using p = 2 and 4 sub-
divisions) compared with that of the standard LSI. The
figure indicates that the accuracy obtained from divide
and conquer is comparable to that of LSI, while in pre-
processing the former runs an order of magnitude faster
than the latter.

The accuracy is measured using the 11-point inter-
polated average precision, as shown in (a) and (d). More
information is provided by plotting the precision-recall
curves. These plots are shown using a specific k for each
data set in (b) and (e). They suggest that the retrieval
accuracy for divide and conquer is close to that of LSI
(and is much better than that of the baseline model
VSM).

Plots (c) and (f) show that divide and conquer
is superior to LSI for being far more economical in
time. The preprocessing of the data sets includes,
for divide and conquer, subdividing the term-document
matrix and computing the Lanczos vectors for each
subdivision; and for LSI, computing the truncated
SVD. The advantage in preprocessing speed is expected
for two reasons: (1) The subdividing process involves
computing only the largest singular vectors, which is
inexpensive; (2) the relevance analysis on subsets is an
economical alternative to the truncated SVD approach.

We also report the average query times in Table 2.
The proposed strategy uses only a fraction of time more
than LSI in general. In theory, the computational com-
plexities of answering queries for both methods are the
same—simply computing inner products of vectors and
scaling. However, since the subdivisions in the divide
and conquer strategy overlap, it is not surprising to see
that there is an additional overhead. Nevertheless, this
overhead is small. What is encouraging is that the query
times recorded for both methods are in the same order
(several or several tens of milliseconds). Hence, this
extra time does not affect the overall efficiency of the
proposed strategy.

Table 2: Average query time (msec).
MED LSI D&C,2 D&C,4
k = 40 1.4969 2.6127 3.8976
k = 60 1.9818 2.6747 4.0574
k = 80 2.5616 2.8388 4.3142
k = 100 3.5161 2.9973 4.5695
k = 120 4.2069 3.1621 4.8515
CRAN LSI D&C,2 D&C,4
k = 120 2.0733 3.7983 5.0959
k = 150 2.5798 4.0787 5.5066
k = 180 3.0010 4.3265 5.9583
k = 210 3.4779 4.6118 6.2639
k = 240 3.9920 4.8311 6.6929

40 50 60 70 80 90 100 110 120
0.5

0.55

0.6

0.65

0.7

0.75

k

av
er

ag
e

pr
ec

is
io

n

VSM LSI D&C,p=2 D&C,p=4

(a) MED: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

recall

pr
ec

is
io

n

LSI
D&C,p=2
D&C,p=4

(b) MED: precision-recall (k = 80).

40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

18

k

pr
ep

ro
ce

ss
in

g
tim

e

LSI
D&C,p=2
D&C,p=4

(c) MED: preprocessing time (seconds).

120 140 160 180 200 220 240
0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

k

av
er

ag
e

pr
ec

is
io

n

VSM LSI D&C,p=2 D&C,p=4

(d) CRAN: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

recall

pr
ec

is
io

n

LSI
D&C,p=2
D&C,p=4

(e) CRAN: precision-recall (k = 200).

120 140 160 180 200 220 240
0

5

10

15

20

25

30

35

40

45

k

pr
ep

ro
ce

ss
in

g
tim

e

LSI
D&C,p=2
D&C,p=4

(f) CRAN: preprocessing time (seconds).

Figure 5: Performance (accuracy and time) tests on MEDLINE and CRANFIELD.

In practical scenarios, only the retrieved documents
with the highest scores (i.e., top in the rank list) are of
interest. This implies that for a certain query, we can
perform relevance analysis only on the subset to which
it belongs. This remedies the overhead of query time, at
the risk of missing some relevant documents. Figure 6
shows that for most of the queries, the percentage of
documents that are missed by performing analysis only
on the most relevant subset is indeed low. This indicates
that in applications where the query time is critical, we
may reduce the amount of relevance analysis by focusing
on only one subset for each query. This way the query
response of our divide and conquer strategy will not be
slower than that of LSI.

4.4 Row partitioning. The divide and conquer
strategy with row partitioning was applied to NPL and
TREC, since their term-document matrices have more
columns than rows. Figure 7 shows the performance of
this strategy when applied to NPL. Similar to Figure 5
(the column partitioning strategy), Figure 7 indicates
that divide and conquer with row partitioning yields
comparable accuracy to LSI, while it is an order of mag-
nitude more efficient for preprocessing. The query times
are again in the order of milliseconds; see Table 3.

0 10 20 30
0.2

0.4

0.6

0.8

1

sorted queries

(a) MED

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

sorted queries

(b) CRAN

Figure 6: Percentage of relevant documents that are in
the subset where a certain query belongs. (using p = 4
subdivisions)

We also performed tests on TREC. Since we have
no access to a fair environment (which required as much
as 16GB working memory and no interruptions from
other users) for time comparisons, we tested only the
accuracy. Figure 8 plots the precision-recall curves. The
data set was partitioned into p = 4 and 8 divisions. As
shown in the figure, divide and conquer greatly improves
over LSI, especially at low recalls, which represent the
earliest appearance of relevant documents.

Besides the above encouraging result, two facts are

260 270 280 290 300 310 320 330 340
0.22

0.225

0.23

0.235

0.24

0.245

k

av
er

ag
e

pr
ec

is
io

n

VSM LSI D&C,p=2 D&C,p=4

(a) NPL: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

recall

pr
ec

is
io

n

LSI
D&C,p=2
D&C,p=4

(b) NPL: precision-recall (k = 300).

260 270 280 290 300 310 320 330 340
0

50

100

150

200

250

300

350

k

pr
ep

ro
ce

ss
in

g
tim

e

LSI
D&C,p=2
D&C,p=4

(c) NPL: preprocessing time (seconds).

Figure 7: Performance (accuracy and time) tests on NPL.

Table 3: Average query time (msec).
NPL LSI D&C,2 D&C,4

k = 260 17.9422 24.6421 22.9736
k = 260 18.7971 25.2407 24.4162
k = 260 20.2458 26.3537 24.0412
k = 260 21.6721 26.7478 27.1805
k = 260 23.3515 28.7238 28.1093

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

recall

pr
ec

is
io

n

LSI
D&C,p=4
D&C,p=8

Figure 8: TREC: precision-recall (k = 300).

worth being mentioned here. The first is that in con-
trast with other experiments which used criterion (4.13)
to bisect the data set, for TREC we used criterion (2.5),
that is, dividing the data set into perfectly balanced
subsets. This follows from an observation of the very
skewed distribution of the terms in TREC. Figure 9 il-
lustrates this phenomenon. The entries of the largest
right singular vector v of the matrix XT − ceT (c.f. Sec-
tion 2.1) are proportional to the distances between data
points (terms in this case) and the dividing hyperplane.
As shown in Figure 9, only a little more than 10% of
the terms are on one side of the hyperplane, and the re-

maining ones, on the other side, are located very close
to this plane. If we had divided the data set using cri-
terion (4.13), it would have resulted in very imbalanced
subsets. This not only affected the effectiveness of the
parallelism of the proposed strategy, but also yielded
poor results. This unusual skewness of the distribution
is by itself an interesting phenomenon worth further in-
vestigation.

0 2 4 6 8 10 12 14

x 10
4

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

sorted entries

en
tr

y
va

lu
es

Figure 9: Entry values of the largest right singular
vector v of the matrix XT − ceT where X is the term-
document matrix of TREC. The dashed vertical line
separates the negative entries from the positive entries.

The second important fact is that the overall ac-
curacy is not high. While our main effort is to de-
sign strategies that can compete with LSI, we note that
for this example LSI did not perform as well as ex-
pected. This may be due to the weighting scheme of
the term-document matrix or the extraction method/-
tool we used. Indeed, different weighting schemes, as
well as what terms are filtered out in the matrix, may
have a significant impact on the accuracy of LSI (see [20]
for some discussions). What this paper presents are two
strategies that compete with LSI regardless of the term

extraction process and the weighting scheme. The lat-
ter factor is itself a research topic that has been widely
addressed in the literature.

5 Conclusions and future work

Two divide and conquer strategies are proposed to
effectively retrieve relevant documents for text mining
problems, along with an efficient technique to use as
an alternative to the classical truncated SVD approach
for relevance analysis. Experimental results show that
these strategies yield comparable retrieval accuracy to
the standard LSI, and are an order of magnitude faster.
In addition, these strategies are easily amenable to
parallel implementations. Because of their inherent
parallelism, they can be deployed for solving much
larger problems than be handled by standard LSI.

Several aspects are worth future investigation fol-
lowing this work. As mentioned in Section 2.3, re-
ordering techniques of sparse matrices can be exploited
to devise more divide and conquer strategies. In Sec-
tion 4.4, the skewed distribution of terms implies that
spectral bisection may not be effective in clustering for
certain data sets, or at least modifications of the tech-
nique are needed. Also, the question of “what is the
optimal number of subdivisions” is as difficult to answer
as “how many clusters a data set has”. The answer is
certainly application and data set specific. Finally, it
would be interesting to see how term extraction meth-
ods and weighting schemes can impact the effectiveness
of the proposed strategies.

References

[1] C. Aykanat, A. Pinar, and U. urek. Permuting sparse
rectangular matrices into block-diagonal form. Techni-
cal report, Computer Engineering Department, Bilkent
University, 2002.

[2] M. Berry and M. Browne. Understanding search
engines: Mathematical Modeling and Text Retrieval.
SIAM, 2nd edition, 2005.

[3] M. Berry, S. Dumais, and G. O’ Brien. Using linear
algebra for intelligent information retrieval. SIAM
Rev., 37(4):573–595, 1995.

[4] M. Berry and R. Fierro. Low-rank orthogonal decom-
positions for information retrieval applications. Nu-
mer. Lin. Alg. Appl., 1:1–27, 1996.

[5] Michael W. Berry. Large scale sparse singular value
computations. International Journal of Supercomputer
Applications, 6(1):13–49, 1992.

[6] Daniel Boley. Principal direction divisive partitioning.
Data Mining and Knowledge Discovery, 2(4):325–344,
1998.

[7] Matthew Brand. Fast low-rank modifications of the
thin singular value decomposition. Linear Algebra
Appl., 415(1):20–30, 2006.

[8] A. Brandt. Multi-level adaptive solutions to boundary
value problems. Mathematics of Computation, 31:333–
390, 1977.

[9] W. L. Briggsa, V. E. Henson, and S. F. Mc Cormick.
A multigrid tutorial. SIAM, 2nd edition, 2000.

[10] Jie Chen and Yousef Saad. Lanczos vectors versus sin-
gular vectors for effective dimension reduction. IEEE
Trans. Knowl. Data Eng., in submission.

[11] E. Chisholm and T. Kolda. New term weighting for-
mulas for the vector space method in information re-
trieval. Technical report, Oak Ridge National Labora-
tory, 1999.

[12] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. Indexing by latent semantic analysis. J.
Soc. Inf. Sci., 41:391–407, 1990.

[13] Carl Eckart and Gale Young. The approximation of
one matrix by another of lower rank. Psychometrika,
1(3):211–218, 1936.

[14] J. Erhel, F. Guyomarc, and Y. Saad. Least-squares
polynomial filters for ill-conditioned linear systems.
Technical report, University of Minnesota Supercom-
puting Institute, 2001.

[15] Haw-Ren Fang and Yousef Saad. Farthest centroids
divisive clustering. In The Seventh International
Conference on Machine Learning and Applications
(ICMLA’08), 2008.

[16] Jing Gao and Jun Zhang. Clustered SVD strategies
in latent semantic indexing. Information Processing &
Management, 41(5):1051–1063, 2005.

[17] G. H. Golub and C. F. Van Loan. Matrix Compu-
tations. Johns Hopkins University Press, 3rd edition,
1996.

[18] W. Hackbusch. Multi-Grid Methods and Applications,
volume 4 of Springer Series in Computational Mathe-
matics. Springer-Verlag, Berlin, 1985.

[19] Bruce Hendrickson and Tamara G. Kolda. Partitioning
rectangular and structurally unsymmetric sparse ma-
trices for parallel processing. SIAM J. Sci. Comput.,
21(6):2048–2072, 2000.

[20] Parry Husbands, Horst Simon, and Chris Ding. Term
norm distribution and its effects on latent semantic
indexing. Information Processing and Management,
41(4):777–787, 2005.

[21] F. Juhász and K. Mályusz. Problems of cluster analysis
from the viewpoint of numerical analysis, volume 22 of
Colloquia Mathematica Societatis Janos Bolyai. North-
Holland, Amsterdam, 1980.

[22] E. Kokiopoulou and Y. Saad. Polynomial filtering in
latent semantic indexing for information retrieval. In
ACM-SIGIR Conference on research and development
in information retrieval, 2004.

[23] T. Kolda and D. O’ Leary. A semi-discrete matrix
decomposition for latent semantic indexing in informa-
tion retrieval. ACM Trans. Inf. Syst., 16(4):322–346,
1998.

[24] C. Lanczos. An iteration method for the solution of the
eigenvalue problem of linear differential and integral
operators. J. Res. Nat. Bur. Stand., 45:255–282, 1950.

[25] Y. Saad. Numerical Methods for Large Eigenvalue
Problems. Halstead Press, New York, 1992.

[26] Yousef Saad. Filtered conjugate residual-type algo-
rithms with applications. SIAM J. Matrix Anal. Appl.,
28(3):845–870, August 2006.

[27] Jane E. Tougas and Raymond J. Spiteri. Updating the
partial singular value decomposition in latent semantic
indexing. Comput. Statist. Data Anal., 52(1):174–183,
2007.

[28] D. Tritchler, S. Fallah, , and J. Beyene. A spectral clus-
tering method for microarray data. Comput. Statist.
Data Anal., 49:63–76, 2005.

[29] D. I. Witter and M. W. Berry. Downdating the latent
semantic indexing model for conceptual information
retrieval. The Computer J., 41(8):589–601, 1998.

[30] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB
toolbox for generating term document matrices from
text collections, pages 187–210. Springer, Berlin, 2006.

[31] Hongyuan Zha and Horst D. Simon. On updating
problems in latent semantic indexing. SIAM J. Sci.
Comput., 21(2):782–791, 1999.

[32] Hongyuan Zha and Zhenyue Zhang. Matrices with
low-rank-plus-shift structure: Partial SVD and latent
semantic indexing. SIAM J. Matrix Anal. Appl.,
21(2):522–536, 1999.

